Open Access Open Access  Restricted Access Subscription Access

AI-Driven Email Automation System

Yeshwini P K, M. Perachiselvi

Abstract


In the modern digital landscape, efficient and personalized communication is critical for marketing, sales, and professional outreach. The AI-Driven Email Automation System leverages Llama 3.1, LangChain, ChromaDB, and Streamlit to automate the creation of personalized emails with minimal manual effort. By integrating Generative AI and Natural Language Processing (NLP) techniques, the system generates context-aware and coherent email drafts tailored to recipient profiles and company information. Retrieval-Augmented Generation (RAG) enhances the relevance and accuracy of content by incorporating contextual data stored in ChromaDB, while LangChain orchestrates prompts to ensure proper structure, tone, and intent. The Streamlit interface provides a user-friendly platform for input collection, real-time editing, and output visualization. This AI communication system demonstrates how combining personalized email generation, retrieval-augmented AI models, and interactive design can improve outreach efficiency, reduce manual workload, and maintain professional communication standards.

Keywords: Llama 3.1, LangChain, ChromaDB, Streamlit, Generative AI, Natural Language Processing (NLP), Retrieval-Augmented Generation (RAG), AI Communication System, Personalized Email Generation


Full Text:

PDF

References


Patil, D. (2024). Email marketing with artificial intelligence: Enhancing personalization, engagement, and customer retention. ResearchGate.

Kamran, A. (2024). Building an AI-powered marketing email generator with LangGraph, OpenAI, and RAG. Medium.

Nair, R., Singh, N., Reddy, M., & Chopra, A. (2021). Enhancing email marketing automation with AI: Leveraging natural language processing and predictive analytics algorithms. International Journal of Advanced Research in Computer Science and Engineering, 8(1), 1–9.

Khare, A., Singh, S., Mishra, R., Prakash, S., & Dixit, P. (2022). E-Mail Assistant: Automation of email handling and management using robotic process automation. arXiv preprint arXiv:2205.05882.

Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins, A., Miklos, B., Corrado, G., Lukacs, L., Ganea, M., Young, P., & Ramavajjala, V. (2016). Smart Reply: Automated response suggestion for email. arXiv preprint arXiv:1606.04870.

Nicolicioiu, A., Iofinova, E., Jovanovic, A., Kurtic, E., Nikdan, M., Panferov, A., Markov, I., Shavit, N., & Alistarh, D. (2024). Panza: Design and analysis of a fully-local personalized text writing assistant. arXiv preprint arXiv:2407.10994.

Huang, W., Chu, D.-T., Bai, L.-Y., Kang, W., Zhang, H.-T., Li, B., Han, Z.-M., Ge, J., & Lin, H.-F. (2025). EvoMail: Self-evolving cognitive agents for adaptive spam and phishing email defense. arXiv preprint arXiv:2509.21129.

Dredze, M. (2008). Intelligent email: Aiding users with AI. Proceedings of the 2008 Conference on Human Language Technology, 1–8.


Refbacks

  • There are currently no refbacks.