Open Access Open Access  Restricted Access Subscription Access

TEXT TO FACIAL SKECTH GENERATION USING GANS

Albin Sojan, Alekh J, Amegh C S, Cyriac P S, Rashma T V

Abstract


This review explores advancements in text-to-facial image generation, focusing on methods like GANs and transformers. Key challenges include semantic alignment and detail synthesis. Applications span virtual avatars and law enforcement, with discussions on ethical concerns and future directions.

Full Text:

PDF

References


. Liao, Z., Feng, Z., Xia, G., & Liu, M. (2022). "Text-to-Image Generation with Semantic-Spatial Aware GAN."

. Chao, W., Chang, L., Xi, F., & Duan, F. (2022). "LAGAN: Landmark Aided Text to Face Sketch Generation."

. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., & He, X. (2018). "AttnGAN: Fine-Grained Text-to-Image Generation with Attentional Generative Adversarial Networks."”

. Chen, X., Qing, L., He, X., Luo, X., & Xu, Y. (2019). FTGAN: A Fully-trained Generative Adversarial Networks for Text to Face Generation.

. H Zhang, H., Xu, T., & Li, H. (2017). StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks.

. Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., & Park, T. (2023). Scaling up GANs for Text-to-Image Synthesis.

. Sauer, A., Karras, T., Laine, S., Geiger, A., & Aila, T. (2023). StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis


Refbacks

  • There are currently no refbacks.